WATER QUALITY DEMONSTRATION STUDY

SANDY CREEK AND TRIBUTARY CAMP HILL, ALABAMA 1989,1990,1991, AND 1992

SPECIAL STUDIES SECTION
FIELD OPERATIONS DIVISION
ALABAMA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT

WATER QUALITY DEMONSTRATION STUDY SANDY CREEK AND TRIBUTARY - CAMP HILL, ALABAMA

INTRODUCTION

The Town of Camp Hill, Alabama utilizes a tributary to Sandy Creek as a receiving stream for the treated effluent from its municipal wastewater treatment facility (WWTP). During the period from August 1989 to October 1990, the WWTP of the Town of Camp Hill underwent construction to upgrade the old disposal plant. Staff members of the Special Studies Section, Field Operations Division of the Alabama Department of Environmental Management (ADEM), at the request of the Municipal Branch of the Water Division of ADEM, conducted a water quality demonstration study to assess the effects of the new treatment facility on Sandy Creek and its tributary.

EPA CONSTRUCTION GRANTS PROGRAM

Since 1972, approximately \$550 million dollars in EPA grant funds have been expended toward construction of municipal wastewater treatment works in Alabama. One recipient of EPA funding was the Town of Camp Hill in Tallapoosa county.

The construction, which was completed in October 1990, upgraded the existing 0.12 million gallons per day (mgd), four acre single cell lagoon to 0.15 mgd by adding a second pond and utilizing aquaculture (water hyacinth) technology. The proposed treatment process was considered innovative technology and allowed Camp Hill to recieve a 20% bonus in grant funds. A total of 75% of the eligible costs for the facility was funded by EPA.

The total project cost was approximately \$857,000. Of this total, approximately \$578,500 was funded by EPA. The project engineer was Goodwyn, Mills, & Cawood, Inc. of Montgomery and the contractor was John Plott Company, Inc. of Tuscaloosa. The new construction included bar screens, four floating aerators, a 200 gallon per minute (gpm) pump station, a two acre hyacinth pond, two greenhouses, flow measuring equipment, a cascade aerator, and a twelve inch diameter gravity outfall.

The new system replaced a non-aerated, four acre, single-cell lagoon discharging secondary quality effluent into a tributary of Sandy Creek. A wasteload allocation study performed by ADEM in 1987 indicated that more stringent limits would be required to maintain the Fish and Wildlife water use classification standard at the existing discharge point. However, by relocating the discharge point to Sandy Creek and employing seasonal limits, Camp Hill would be able to meet proposed new limits by utilizing the cost-effective aquaculture treatment process.

The objective of aquaculture treatment is the removal of nutrients (nitrogen, phosphorus), and suspended solids and the reduction of BOD. During the active growth phase, water hyacinths are capable of absorbing organics, heavy metals, pesticides and other contaminants. The hyacinths uptake nutrients for growth and physically filter solids with their extensive root systems. The

root system also supports an active mass of microorganisms which assist in breaking down and removing pollutants from the wastewater. Another benefit is that algae in the pond effluent is reduced due to the hyacinths limiting the light available to the algae for

photosynthesis.

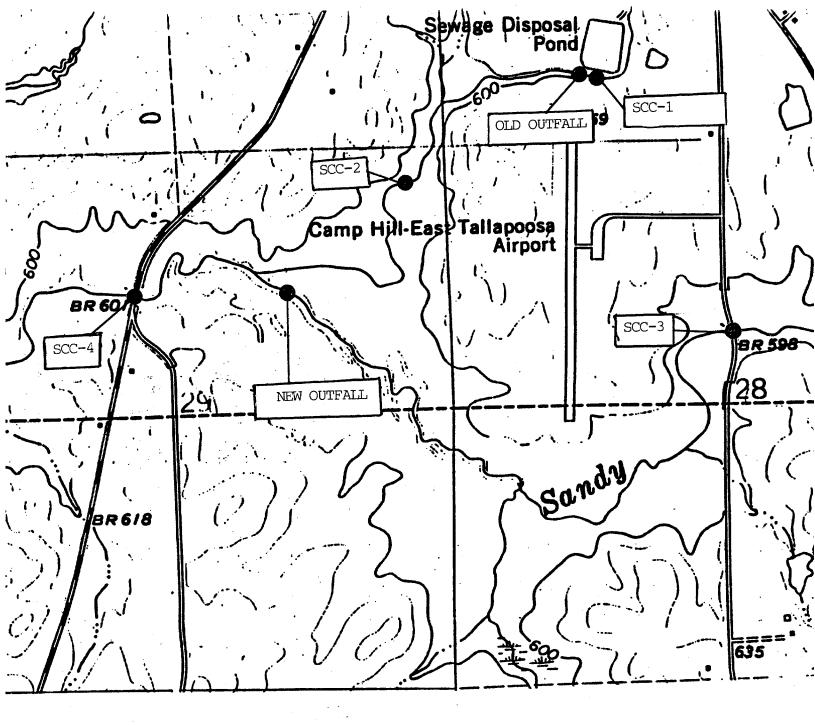
The water hyacinth is very sensitive to temperature and grows most rapidly when the water temperature is 70 to 86 degrees Farenheit. Growth ceases at water temperatures below 50 degrees Farenheit and above 104 degrees Farenheit. Exposure to temperatures of 23 degrees Farenheit or below will kill the plants. The Camp Hill aquaculture system will provide maximum treatment during the summer low flow months when the permit limits are most stringent. In the winter, when cold weather reduces hyacinths to a dormant state, the permit limits are relaxed to secondary levels and compliance should be achieved by conventional lagoon processes.

The Town of Camp Hill, Alabama now discharges treated wastewater to Sandy Creek. Monthly seasonal NPDES permit limits for

the WWTP are as follows:

	May-Oct	Nov-Apr
BOD ₅	20 mg/L	30 mg/L
TSS ³	30 mg/L	90 mg/L
NH^3-N	8 mg/L	N/A
D.đ.	5 mg/L	N/A

Since initiation of operation in October 1990, the Camp Hill WWTP has experienced some problems in consistently meeting all NPDES permit limits. Possible causes of the facility's non-compliance include the following:


- 1). Infestation of the hyacinths with spider mites.
- 2). Growth of duckweed on the primary lagoon.
- 3). Improper harvesting of the water hyacinths.
- 4). Improper operation of aeration equipment.

A Corrective Action Report (CAR) has been submitted to ADEM by Camp Hill with a schedule for bringing the facility into compliance. Minor changes in the operation and management of the facility should remedy the permit violation problems.

FIELD OPERATIONS

During the period of May to October 1989 and May to September 1990, staff members of the Special Studies Section collected data to establish conditions and provide a comparative base of information on the tributary to- and Sandy Creek prior to construction and implementation of the new treatment plant. During May 1991 and August 1992, data were collected to demonstrate the improvement, if any, of water quality in the receiving stream attributable to the new plant.

SAMPLING LOCATIONS AND METHODOLOGY

TRIBUTARY TO AND SANDY CREEK Sampling Locations

The station names and locations were as follows:

STATION LOCATION:

SCC-1 Tributary to Sandy Creek 50 feet upstream of WWTP.

(control) T21N, R24E, S21, SW1/4, SE1/4, SW1/4.

Latitude: 32 47 07.8 Longitude: 086 39 26.0

SCC-2 Tributary to Sandy Creek 0.5 mile downstream of WWTP.

T21N, R24E, S29, NE1/4, NE1/4, NE1/4.

Latitude: 32 46 54.1 Longitude: 086 39 11.2

SCC-3 Sandy Creek 1.5 mile upstream of confluence of tributary.

(control) T21N, R24E, S28, NW1/4, SE1/4, NE1/4.

Latitude: 32 46 35.1 Longitude: 086 39 11.2

SCC-4 Sandy Creek at Alabama Highway 50.

T21N, R24E, S29, NW1/4, NE1/4, SE1/4.

Latitude: 32 46 40.4 Longitude: 086 40 18.4

All physical data, chemical and biological sampling, sample handling techniques, and field parameter analyses utilized in the acquisition of data for this water quality demonstration study were as described in the Field Operations Standard Operating Procedures and Quality Control Assurance Manual (Field Operations Division, ADEM, Volumes 1 and 2), as amended. Chain-of-custody was maintained by locking the samples in a Departmental vehicle when not in sight of a Field Operations employee. The samples requiring laboratory analysis were transported to the ADEM Environmental Laboratory in Montgomery, Alabama. Analysis methodology were as specified in the Federal Register, 40 CFR Part 136, October 1984, as amended. Analysis of the samples yielded the data which are reported in Tables 1 and 2.

DISCUSSION AND RESULTS

A. PHYSICAL

The tributary to Sandy Creek is a first order stream, over the length of the study reach. It drains agricultural, commercial, field/pasture, and forested lands and falls within the Sand Hills Sandy Creek is a fourth order stream and drains sub-Ecoregion. commercial and forested lands. Sandy Creek has canopy cover which varies from mostly open to mostly shaded, has trees and shrubs as the dominant type of streamside vegetation and has moderately stable Bottom structure is largely dominated by gravel, clay, and sand substrates. Flows are usually greater than five cfs, even during low flow conditions. Sandy Creek exhibits signs of erosion varying degrees, but shows no channel alteration. Multiple habitats suitable for colonization by aquatic macroinvertebrates are abundant and, Habitat Assessments rated this stream as GOOD at both evaluated locations. Sandy Creek lies within the Tallapoosa River drainage basin.

B. CHEMICAL

The Water Use Classification for Sandy Creek is Fish and

Wildlife (F&W). F&W designates the waters to be suitable for fishing, propagation of fish, aquatic life, and wildlife, and any other usage except for swimming and water contact sports or as a source of water supply for drinking or food processing purposes.

As shown in Table 1, and Figure 1, data collected prior to the upgrade of the treatment plant indicated that the waters in the tributary to Sandy Creek below the Camp Hill WWTP were not meeting the dissolved oxygen standard for the F&W classification (5.0 mg/L). The pH data collected (Table 1, Figure 2) indicated very minor changes in the stream. Biochemical Oxygen Demand (BOD₅), Ammonia (NH₃), Total Kjeldahl Nitrogen (TKN), and Phosphates (PO₄) were all shown to have substantial increases as compared to the upstream stations (Table 1, Figures 3, 4, and 5). In contrast, Sandy Creek, prior to the upgrade of the WWTP, showed very little adverse impact attributable to the effluent.

Chemical data collected on the tributary to Sandy Creek after the upgrade indicated that, when compared to data collected before the upgrade, water quality was improved. Dissolved Oxygen concentrations (Table 2, Figure 1) exhibited a substantial increase. In addition, BOD₅, NH₃, TKN, and PO₄ showed significant reductions in concentration (Table 2, Figures 3, 4, and 5). Conductivity was also shown to decrease downstream of the WWTP (Table 2, Figure 2). Sandy Creek continued to show little adverse impact.

Flow data collected on Sandy Creek (Tables 1 and 2, Figure 2) before and after the upgrade of the WWTP was observed to be approximately the same; between 30 and 36 cubic feet per second (cfs). The 7Q10 low flow for Sandy Creek above the WWTP outfall, however, is 4.6 cfs. This indicates that the stream flows recorded during the study dates were dramatically elevated and may account for the minimal impact from the WWTP.

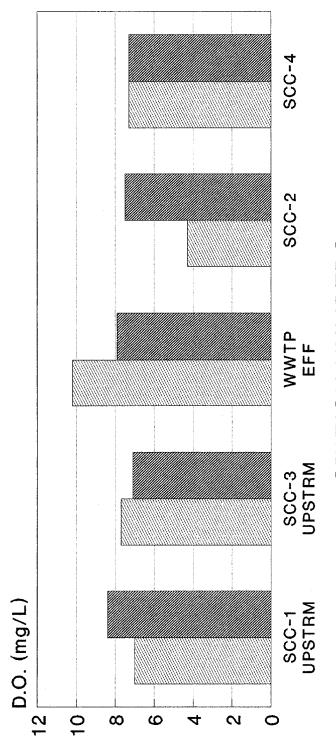
C. BIOLOGICAL

An assessment of Sandy Creek water quality would be incomplete without considering impacts to the biological communities. The aquatic macroinvertebrate community was sampled using the RBP-Multihabitat method to substantiate the physical, and chemical data and to provide an aspect that reflects pollution response over time.

A complete listing of the taxa collected during this water quality demonstration study has been included in Appendix A. In order to provide results which accurately assess the sampling locations, biological metrics (Tables 3 to 5, Figures 6 to 8) were used to analyze only the raw macroinvertebrate data collected at similar habitats. Table 6 provides a simplified interpretation of these metrics and should be referred to as part of the following discussion.

During the before portion of the water quality demonstration study, a visual assessment was made of the stations associated with the tributary to Sandy Creek. During this visual assessment, SCC-1 was noted to have three types of mayflies, two types of stoneflies, three types of Odonates (Gomphidae, Aeschnidae, Coenagrionidae), Elmid beetles, one Caddisfly, Chironomids, Isopods and Fish (Chubs

or Shiners). In contrast, SCC-2 biological communities were limited to Oligochaetes (dominant organism), Chironomids, one Odonate (Gomphidae), and one large school of fish (Gambusia). In addition, the presence of large amounts of duckweed and filamentous algae were noted. The tributary to Sandy Creek was heavily impacted by the presence of the effluent.


As demonstrated in Tables 3, 4, and 5 and Figures 6, 7, and 8, aquatic macroinvertebrates collected from Sandy Creek before the upgrade of the WWTP, showed little impact from the addition of the effluent bearing waters from the tributary. A slight reduction in the overall number of taxa present, and in the generally pollution intolerant Ephemeroptera, Plecoptera and Trichoptera (EPT) families was noted at SCC-4 (Figure 6, Tables 3 and 4). Community structure observed to be well balanced (Figure 8) was with all major feeding groups functional present. Species Diversity, Equitability (Figure 7) at SCC-4 also showed a slight decrease as compared to SCC-3. The Similarity Indices (Table 5), indicated that both stations were very similar. The Biotic Index (Table 3 and 4, 6), Shredders to Total and ratio, Scrapers Scrapers/Collector-Filterers ratio indicated little change as compared to background. The EPT to EPT+Chironomidae ratio also supported the conclusion of acceptable water quality. biological community of Sandy Creek below the WWTP discharge appears to be minimally affected by the effluent.

Due to the complete removal of the effluent outfall from the tributary to Sandy Creek and the extremely low flow being discharged to Sandy Creek from the new effluent outfall (averaging approximately 1.3% of the total stream flow), a biological assessment during the after portion of this WQDS was regarded as unnecessary to demonstrate an improvement in water quality.

CONCLUSIONS

Physical, chemical, and biological data collected before the upgrade, and physical, and chemical data collected after the upgrade of the Camp Hill wastewater treatment plant indicate that the tributary to- and Sandy Creek are meeting their requirements for the Fish and Wildlife Water Use Classification. The tributary to Sandy Creek has experienced an improvement in overall water quality, due to the complete removal of the effluent discharge. Sandy Creek has experienced minimal adverse impact attributable to the Camp Hill WWTP effluent. This may be the result of higher than average stream flows.

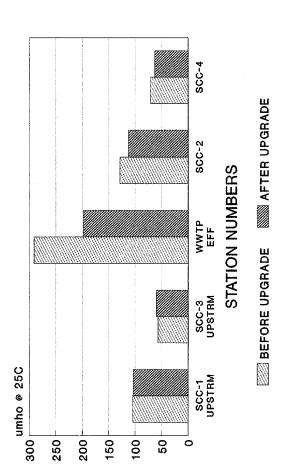
FIGURE 1 TRIBUTARY TO- AND SANDY CREEK DISSOLVED OXYGEN DATA

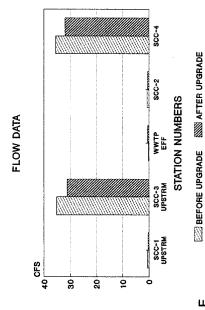
STATION NUMBERS

FIGURE 2 TRIBUTARY TO- AND SANDY CREEK

pH DATA

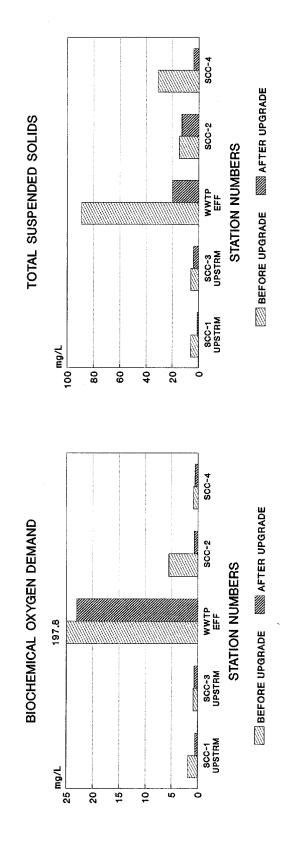
S.U.




SCC-4

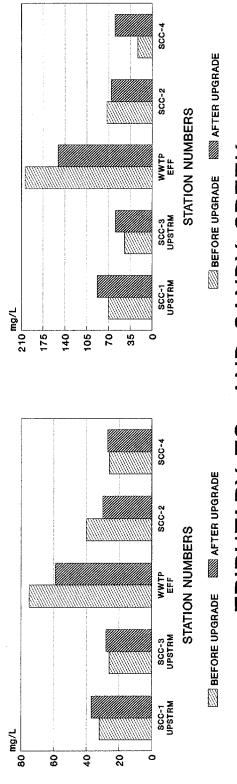
BEFORE UPGRADE IIII AFTER UPGRADE

STATION NUMBERS


SCC-3 UPSTRM

THE ABOVE NUMBERS ARE AVERAGES REPRESENTING MULTIPLE SAMPLING EVENTS.

FIGURE 3 TRIBUTARY TO- AND SANDY CREEK CHEMICAL ANALYSIS DATA

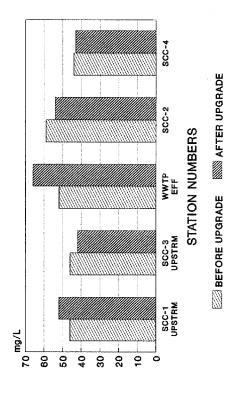


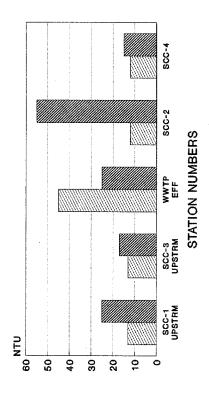
THE ABOVE NUMBERS ARE AVERAGES REPRESENTING MULTIPLE SAMPLING EVENTS.

FIGURE 4

ALKALINITY

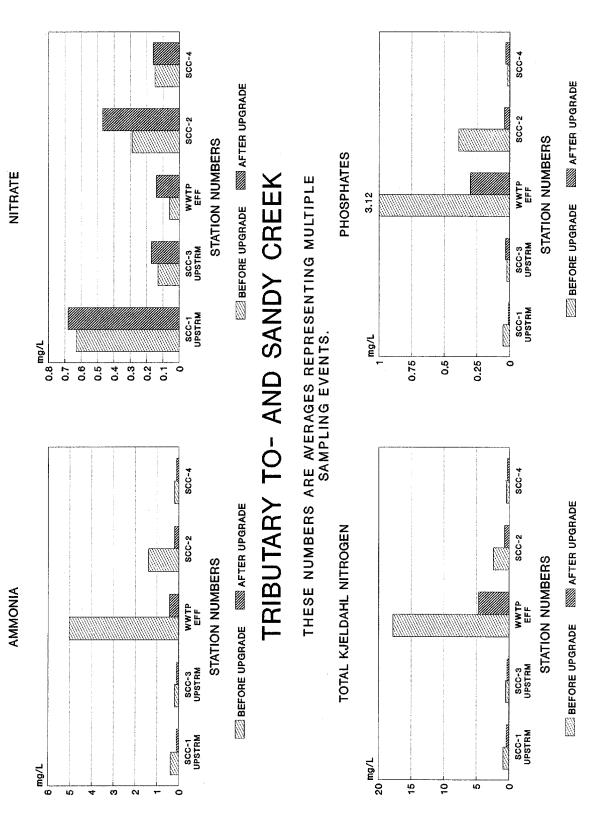
TOTAL DISSOLVED SOLIDS




TRIBUTARY TO- AND SANDY CREEK

THESE NUMBERS ARE AVERAGES REPRESENTING MULTIPLE SAMPLING EVENTS.

HARDNESS


TURBIDITY

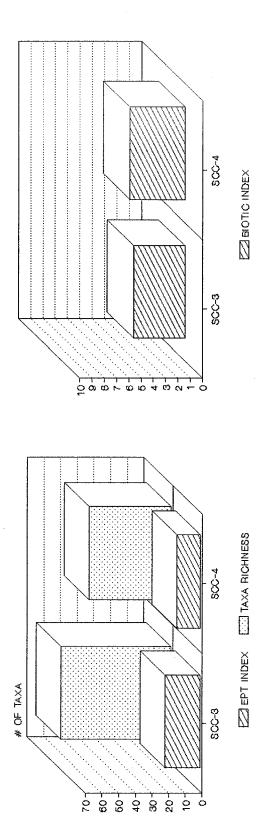
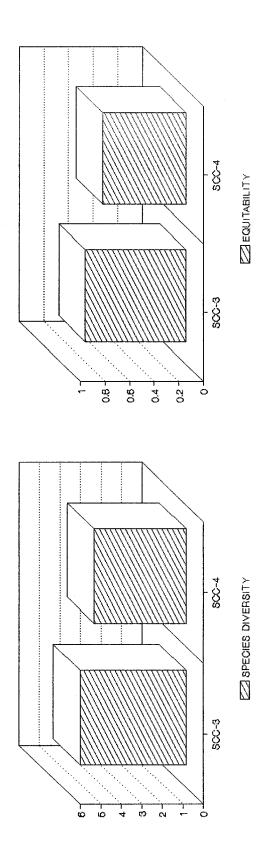

BEFORE UPGRADE MM AFTER UPGRADE

FIGURE 5


FIGURE 6 BIOMETRIC INDICES

BEFORE UPGRADE

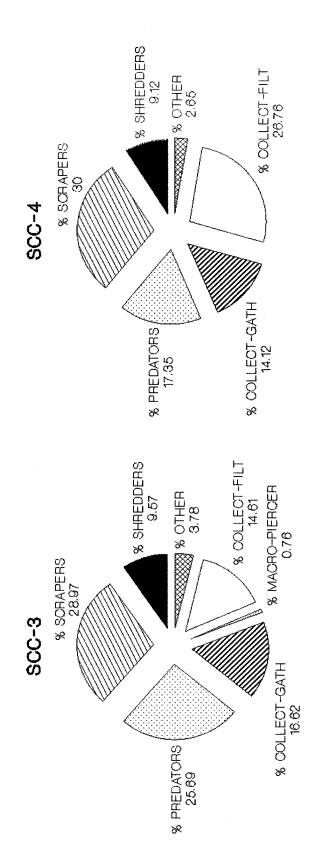


FIGURE 7 BIOMETRIC INDICES

BEFORE UPGRADE

FIGURE 8 SANDY CREEK COMMUNITY STRUCTURE BEFORE UPGRADE

% OTHER ARE THE ORGANISMS WITHOUT FUNCTIONAL

FEEDING GROUP DESIGNATION.

TABLE 1

WATER QUALITY DEMONSTRATION STUDY TRIBUTARY TO- AND SANDY CREEK AT CAMP HILL, ALABAMA DATA COLLECTED PRIOR TO UPGRADE OF WMTP

BACT			670 146.7 350 40 >1280 15		510 3200 260 280 147		97	160	102 41	72 org/ 100mL
FLOW	0.15 0.13 0.3 0.08 0.08	0.12	0.58 0.83 0.84 0.58	0.57	0.73 1.02 0.47 1.14 0.66	0.68	65.4 5.02	35.21	66.06 5.11	35.59 cfs
PHOS TOT		3.12	0.02 0.08 0.03 0.03 0.02 0.02		0.43 0.15 0.18 0.38 0.13	0.39	<0.02 <0.02		4.62	wdd.
¥	27.2 4.69 9.79 12.96 9.7	17.79	2.2 0.82 <0.4 1 0.5		5.2 0.41 0.85 1.1 0.8	2.4	0.6		⊕ 4. 4.	- edd
N H N	1.92 0.51 5.29 4.9	5.02	0.5 0.2 0.2 0.2 0.2 0.2		2.6 <0.2 0.41 <1 0.4 3.8	1	40.2 40.2	 	40.2	
N S	0.12		0.78 0.73 0.41 0.9	0.63	0.14 0.23 0.23 0.31 0.58		0.18	0.13	0.22	0.15 ppm
9	2	101	01 12 13 15 10 10	11	22 22 23 24 4	28	~~	~	10	10 Ppm 7/2
TDS	223 181 181 386 386 386	204	888274	70	88 23 23 112	73	33	4	9	23 E E
755	115 44 60 60 13 13 13 13	68	6 20 3 3 1		6 10 10 43	15	10	9	33	31 PPM
HARD	824488	22	22332	46	23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	53	54.6	46	88	44 mpq
80D 5	23.5 23.5 43 48 23 999	197.8	0.0 4.0 2.0 2.7 4	1.9	0.8 2.9 3.1 22	5.5	1.2	0.9	1.6	0.9 ppm
퓢	882551	25		32	46 48 48 50 70 70	4	88	26	32	26 PPm
TURB	88 31 25 35 74	45	9 11 8 8 8 7 7	13	111 8 8 21 10 13	12	15 11	13	13	12 NTU
SPEC	85 88 88 88 88 88 88 88 88 88 88 88 88 8	291	201 1100 1100 1100 1100 1100	105	118 101 111 132 106 204	129	88	25	65 76	71 umbo @25C
μH	7 C C 4.88	۲. ن	7.5 6.9 6.9 7.7	7.2	7.7.9 6.0.7.7 6.0.0.6.6.	7.1	7.2	7.7	7.5	7.4 SU
D.O.	11.1	10.2	7.5 3.6 8.1 7.7	7.0	1.3 9.9 7.7	4.3	7.7 6.2	7.0	7.8 6.7	7.3 ppm
WATER TEMP	32828	24.8	23 27 27 27	22.2	24.5 24.5 22 16 22 24	22.4	88	23.5	21 24	22.5 C
AIR TEMP	25.5 24.2 24.5 24.5 38.5 38.5 38.5 38.5 38.5 38.5 38.5 38	25.6	23.53 23.53	26.4	38833B	26.7	88	27.5	2.2	24.5 C
A TIME	12: 12 10: 30 12: 15 12: 15 11: 25 10: 38		12: 05 10: 25 10: 30 10: 55 11: 05		13:35 11:05 10:30 10:05 10:10		11:35 11:00		09: 10 08: 40	
DATE STATION TIME	05/24/89 STP 07/13/89 EFF 08/22/89 10/03/89 05/17/90	HVERHGE	05/24/89 SCC-1 07/13/89 08/22/89 10/03/89 05/17/90	AVERAGE	05/24/89 SCC-2 07/13/89 08/22/89 10/03/89 05/17/90	AVERAGE	05/17/90 50C-3 09/11/90	AVERAGE	05/17/90 SCC-4 09/11/90	AVERAGE

TARIF 2

WATER QUALITY DEMONSTRATION STUDY TRIBUTARY TO- AND SANDY CREEK AT CAMP HILL, ALABAMA DATA COLLECTED AFTER UPGRADE OF WWTP

BACT			×60				25	35	2	2 org/ 100 mL
FLOW	0.16	0.41	0.44	0.35	0.6	09.0	36.68 25.59	31.14	37.28 26.51	31.90 cfs o
PH05 T0T	0.3	0.30	<0.02 0.008		0.04	0.04	0.03	0.03	0.04	0.03 ppm
000	88	88	10	10	O.? INACCESSIBLE		2	CI.	2	2 ppm
NO	2.6 6.05	4.33	$\begin{array}{c} 0.7 \\ 0.13 \end{array}$	0.42	0.7 INACCE	0.70	0.21	0.11	0.19	0.10 ppm
K K	2.6	4.65	0.7		0.7	0.70	<0.4		<0.4 0.19	l ∰dd
¥ E	<0.2 0.65		<0.2<0.015	!	0.47 <0.2 INACCESSIBLE		<0.2 <0.015		<0.2 <0.015	mdd
N- CN	0.04	1	0.67	0.68	O. 47 INACCE	0.47	0.16 0.18	0.17	0.16	0.16 ppm
TDS	101	151	88	88	99	99	Ÿ. 2	59	98	₩dd
755	13	8	7	!	54 13 ESSIBLE	13	വെ	শ	9 2	4 Ppm
HARD	55	99	54 49	22	54 ESSIE	45	24 66	45	46	43 PPm
CI	35	20.7	ភាព	9	4.5 ! INACCES	Ŋ	2.5	ന	2.5	2 PPm
80D 5	, e &	23	0.3	0.5	0.7 E	0.7	0.8	0.7	0.4 0.8	0.6 Ppm
묶	46	53	34	32	30 SSIBL	39	388	28	25	27 PPm
TURB	188	52	2.2	25	SS INACCE	35	27 7.6	17	23 6.6	15 NTU
SPEC	130	198	107 100	104	113 LE	113	99	09	88	63 umbo @25C
五	7.6	7.3	~ ~	۲~	6.8 ESSIB	6.8	7.1	7.1	7.1	2.1 원
0.0.	8.3	7.9	0.0. 4.4	4.8	7.5 6.8 11 INACCESSIBLE	7.5 6.8	7.2	7.1	2.2 4.5	7.3 PPm
WATER D.O. TEMP	21	24	19 26	22.5	19	19	88	23	20.5	2 ₄
HIR TEMP	200	ß	98 88 88	27	1015 25 INACCESSIBLE	83	8.13	28	38	8 5
TIME	1105		1055 1030		1015 INACCI		1155 1305		1220 1330	
STATION TIME	/91 STP /92 EFF	19E	/91 SCC-1 //92	35.	05/24/91 SCC-2 08/26/92	<u>GE</u>	05/24/91 SCC-3 08/26/92	<u>9</u> E	/91 SCC-4 /92	GE.
DATE	05/24/91 08/26/92	AVERAGE	05/24/91 08/26/92	AVERAGE	05/24/91 08/26/92	AVERAGE	05/24/91 08/26/92	AVERAGE	05/24/91	AVERAGE

92/02/24 09:49:58 PROGRAM ID: NSTATION

SANDY CREEK SCC3-900718 SINGLE STATION METRICS MACROINVERTEBRATE DATA

TABLE 3

	RIFFLE	ROOT/ BANK	ROCK LOG	СРОМ	SAND	T0TAL
TAXA RICHNESS	17	44	12	34	∞	99
# ORGANISMS	06	136	44	119	œ	397
EPT TAXA RICHNESS	10	-	9	12	2	21
AVERAGE TOLERANCE VALUE	3.88	4.95	3.58	4.09	5.13	4.68
BIOTIC INDEX	3.59	4.53	4.55	4.10	5.13	4.20
# CHIRONOMIDAE TAXA / TOTAL TAXA	90.	.23	.08	.26	.38	.23
# EPT / # EPT + # CHIRONOMIDAE # SCRAPERS / # FILTERING COLLECTORS	.94	.73	.93	.64	.40	.74
+ # SCRAPERS	69.	.63	.94	.52	.67	.66
# SHREDDERS / TOTAL # ORGANISMS	60.	.12	.02		00.	.10
PERCENT SCRAPERS	40.00		68.18	26.89	25.00	28.97
PERCENT SHREDDERS	8.89	11.76	2.27	10.92	00.	9.57
PERCENT FILTERING COLLECTORS	17.78	6.62	4.55	25.21	12.50	14.61
PERCENT COLLECTOR GATHERERS	26.67	11.76	60.6	15.97	37.50	16.62
PERCENT PREDATORS	Ŋ	47	15	19	25	25.69
PERCENT MACROPHYTE PIERCERS	1.11	.74	.00	.84	00.	.76
PERCENT OTHERS	00.	10.29	.00	.84	00.	3.78
# HYDROPTILIDAE / # TRICHOPTERA	.0588	.0556	0000	.0625	0000	.0545
SHANNON WEAVER DIVERSITY INDEX	3.46	4.84	2.56	4.35	3.00	5.17
EQUITABILITY	.93	96.	.67	88	1.41	.82

49:58	NSTATION
60	::
2/02/24	ROGRAM

SANDY CREEK SCC3-900718 SINGLE STATION METRICS MACROINVERTEBRATE DATA

TABLE 3

DOMINANT TAXON AND PERCENT CONTRIBUTION

Cryptochironomus Elimia SAND CPOM Stenonema 15.97 ROCK LOG Elimia 50.00 ROOT BANK 13.24 Calopteryx RIFFLE Promoresia 21.11

26 gG

SANDY CREEK SCC3-900718 SINGLE STATION METRICS MACROINVERTEBRATE DATA

FIVE DOMINANT TAXA IN TOTAL COLUMN AND PERCENT CONTRIBUTION

Elimia

13.35

Stenonema

8.82

Promoresia

5.29

Calopteryx 4.79 Cheumatopsyche

4.28

PAGE

92/02/24 09:49:58 PROGRAM ID: NSTATION

TABLE 4

SCC4-900718 SINGLE STATION METRICS MACROINVERTEBRATE DATA

	•		est.			~			•		6.		6.1			,			
T0TAL	49	340	14	4.47	4.51	.18	.80	.53	.00	30.00	9.12	26.76	14.12	17.35	00.	2.65	0000	4.49	89.
SAND	ო	15	0	6.33	6.40	00.	00.	.57	00.	53.33	00.	40.00	00.	9	00.	00.	0000	1.27	.98
CPOM	15	4	ស	4.07	4.00	.27	.79	.44	.07	31.82	6.82	40.91	60.6	6	00.	2.27	0000	3.29	.93
ROCK L0G	22	188	10	3.96	4.38	.23	.83	.61	=	38.83	10.64	25.00	15.96	6	00.	00.	0000	3.52	.75
R00T/ BANK	19	62	က	5.44	5.06	.16	.62	1.00	.13	4.84	12.90	00.	11.29	28	00.	12.90	0000	3.75	1.02
RIFFLE		31	4	4.75	4.10	.25	. 85	11.	00.	12.90	00.	64.52	22.58	0	00.	00.	0000.	2.26	.81
	TAXA RICHNESS	# ORGANISMS	EPT TAXA RICHNESS	AVERAGE TOLERANCE VALUE	BIOTIC INDEX	# CHIRONOMIDAE TAXA / TOTAL TAXA	# EPT / # EPT + # CHIRONOMIDAE # SCRAPERS / # FILTERING COLLECTORS	+ # SCRAPERS	# SHREDDERS / TOTAL # ORGANISMS	PERCENT SCRAPERS	PERCENT SHREDDERS	PERCENT FILTERING COLLECTORS	PERCENT COLLECTOR GATHERERS	PERCENT PREDATORS	PERCENT MACROPHYTE PIERCERS	PERCENT OTHERS	# HYDROPTILIDAE / # TRICHOPTERA	SHANNON WEAVER DIVERSITY INDEX	ЕQUITABILITY

92/02/24 09:55:16 PROGRAM ID: NSTATION

TABLE 4

SCC4-900718 SINGLE STATION METRICS MACROINVERTEBRATE DATA

SAND DOMINANT TAXON AND PERCENT CONTRIBUTION CPOM ROCK LOG ROOT BANK

T0TAL

20.59 Elimia 53.33 Elimia Cheumatopsyche 25.00 Elimia 30.85 Sialis 20.97

Ceratopsyche

51.61

RIFFLE

TABLE 4

SCC4-900718 SINGLE STATION METRICS MACROINVERTEBRATE DATA

FIVE DOMINANT TAXA IN TOTAL COLUMN AND PERCENT CONTRIBUTION

Elimia

20.59

5.00

4.12

PAGE

92/02/24 09:55:16 PROGRAM ID: NSTATION

Cheumatopsyche

10.59

Ceratopsyche

10.00

Stenonema

Nectopsyche

TABLE

SANDY CREEK COMPARISON METRICS MACROINVERTEBRATE DATA

8		38
0		0
8	S	90
003	VERSUS	904
သွင		ည္တ

Elimia	Stenonema	Cheumatopsyche	۳
			NIMBED OF DOMINANTS IN COMMON
COMMON			MINANTS
S IN			5
DOMINANTS IN COMMON			NI IMPED
and a second of	page - Grammar (Alemania - Cons	277800000000000000000000000000000000000	person reco

ဇ	1.14	99.	.57	۲49	
NUMBER OF DOMINANTS IN COMMON	INDICATOR ASSEMBLAGE INDEX	SORENSON'S COMMUNITY SIMILARITY INDEX	COMMUNITY LOSS INDEX	JACCARD COEFFICIENT OF COMMUNITY	QUANTITATIVE SIMILARITY INDEX

	INDEX
	SIMILARITY
TAXA	QUANTITATIVE

54.98

GROUP
FEEDING
FUNCTIONAL

82
ထ
•
9
86

TABLE 6 BIOMETRIC INTERPRETATION

METRIC	RANGE	INTERPRETATION
HABITAT ASSESSMENT	71-103 35-70	
a). TAXA RICHNESS b). EPT INDEX c). SHANNON-WEAVER SPECIES DIVERSITY d). EQUITABILITY		GENERALLY INCREASES WITH INCREASING WATER QUALITY.
a). BIOTIC INDEX b). % DOMINANT TAXA c). TOLERANCE VALUE OF		GENERALLY INCREASES WITH DECREASING WATER QUALITY.
a). % SHREDDERS b). % SCRAPERS c). % PREDATORS d). % COLLECTOR-GATHERE e). % COLLECTOR-FILTERE f). % MACROPHYTE PIERCE g). % OTHERS	RS	PERCENTAGES AND COMPOSITION SHOULD BE SIMILAR TO BACKGROUND STATION FOR SIMILAR STREAM SIZES AND HABITAT COMPOSITION.
a). SCRAPERS/SCRAPERS+C b). SHREDDERS/TOTAL c). HYDROPTILIDAE/TRICE		NO SIGNIFICANT CHANGE AS COMPARED TO BACKGROUND.
a). EPT/EPT+CHIRONOMIDA		GENERALLY INCREASING WATER QUALITY AS APPROACHES 1.0.
	SIMILARI	ry indices
a). INDICATOR ASSEMBLAGINDEX (IAI) b). JACCARD COMMUNITY S c). SORENSON'S CSI		 INCREASING SIMILARITY AS APPROACHES 1.0.
a). DOMINANTS IN COMMON b). QUANTITATIVE SIMILA INDEX (QSI)-TAXA c). QSI-FUNCTIONAL FEEL GROUP (FFG)	RITY	GENERALLY INCREASING WITH INCREASING SIMILARITY.
a). COMMUNITY LOSS INDE		GENERALLY INCREASING WITH INCREASING DISSIMILARITY.

17:34	NSTATION
10:	::
32/02/24	ROGRAM

TOTAL

PROGRAM ID: NSTATION		5					
	SANDY CREE MACROINVE	SANDY CREEK SCC3-900718 MACROINVERTEBRATE DATA					
	RIFFLE	R00T/ BANK	R0CK L0G	СРОМ	SAND	MACROPHYTE SWEEP	·
ANNELIDA		4					
ARTHROPODA MALACOSTRACA							
AMPHIPUDA Talitridae							
Hyalella		r					
DECAPODA TSOPOJA		4				2	
Asellidae Asellus		2					
		,					
Lirceus		_					
INSECTA							
COLEOPTERA							
Hydroporus		-					
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							
Elillidae Ancyronyx		2					
Dubiraphia		,				2	
Macronychus		ស					
Promoresia	19		_	_			
Stenelmis	11	_	_	2		_	
200							
oyi iii aae Dineutus		_					
Hydrophilidae Hydrophilidae		6		-			
ופוסחים		J		-			
Psephenidae Psephenus							
DIPTERA							
Ceratopogonidae Atrichopogon				-			
Bezzia			,				
CHIRONOMIDAE							
ch ronominae Chironomini							

17:34	NSTATION
10:	<u></u>
2/02/24	OGRAM
2	Õ.

7

PROGRAM ID: NSTATION	SANDY CREE MACROINVE	SANDY CREEK SCC3-900718 MACROINVERTEBRATE DATA	∞∢				
	RIFFLE	R00T/ BANK	R0CK L0G	СРОМ	SAND	MACROPHYTE SWEEP	T0TA
Cryptochironomus		-			-		
Microtendipes				-			
Nilothauma							
Phaenopsectra		က					
Polypedilum	2			13			-
Stictochironomus							
Xenochironomus		_					
Tanvtarsini							
Rheotanytarsus		_		ស		_	
Tanytarsus		-		ະດ			
Tanytarsini UNID		2					
Orthocladinae Orthocladius				-			
Rheocricotopus			-	ιn			
Tanypodinae Ablahosenvia		,		-			
		. ,		. ,			
Natarsia 				-			
Labrundinia		_					
Thienemannimyia Grp				,			
Simulidae Simulium		-		ო	•	-	
Tabanidae Tabanus		4					
Tipulidae Tipula	က	ស					
Dixidae Dixella		-					
EPHEMEROPTERA							

17:34	NSTATION
10:1	10:
92/02/24	PROGRAM

2/02/24 10:17:34	TAX	TAXA LIST					PAGE 3	
ROGRAM ID: NSTALLON	SANDY CREEI MACROINVEI	SANDY CREEK SCC3-900718 MACROINVERTEBRATE DATA						
	RIFFLE	R00T/ BANK	ROCK LOG	СРОМ	SAND	MACROPHYTE SWEEP	TOTAL	
Baetidae Baetis	ιΩ		2	4		2	13	
Ephemeridae Hexagenia		ო				4	7	
Heptagenidae Heptagenia	က		-				4	
Stenonema	m	7	9	19		80	43	
Heptageniidae UNID		4				7	9	
Oligoneuridae Isonychia	ស						7	
Polymitarcyidae Ephoron							,	
Tricorythidae Tricorythodes		-		L 4		2	1 7	
HEMIPTERA Mesoveliidae Mesovelia		-					-	
Veliidae Microvelia						-	-	
MEGALOPTERA Corydalidae Corydalus				-			-	
Nigronia				2			2	
ODONATA Aeshnidae Boyeria	-	10	4	-		2	18	
Calopterygidae Calopteryx		18					19	
Coenagrionidae Argia		∞					∞	
Gomphidae Gomphus		6			,	. 2	12	

7:34	NSTATION
92/02/24 10:1	PROGRAM ID:

PROGRAM ID: NSTATION	SANDY CREEK MACROINVER	SANDY CREEK SCC3-900718 MACROINVERTEBRATE DATA					
· vao Terroracompo	RIFFLE	ROOT/ BANK	ROCK LOG	СРОМ	SAND	MACROPHYTE SWEEP	TOTAL
Macromiidae Macromia		-		-			7
PLECOPTERA Parlidae							
Acroneuria			2	6		ന	14
Neoperla		4		က		-	80
Paragnetina	-	-		2			4
Perlidae UNID						-	_
TRICHOPTERA Brachycentridae Brachycentrus		2		4		8	
Microsema	က						က
Hydropsychidae Ceratopsyche	vo			-			7
Cheumatopsyche	LΩ.		· 8	10			17
Hydroptilidae Hydroptila	1	-		. -			က
Leptoceridae Nectopsyche		7	-			m	=
Oecetis	2						2
Limnephilidae Pycnopsyche		ო					м
Polycentropodidae Polycentropus		7					2
Psychomyi dae Lype		ო					4
MOLLUSCA GASTROPODA MESOGASTROPODA Pleuroceridae Elimia	91		22	Ε	-	15	89
PELECYPODA							

ß

PAGE

TAXA LIST

SANDY CREEK SCC3-900718
MACROINVERTEBRATE DATA

ROOT/ BANK RIFFLE

CPOM

TOTAL

MACROPHYTE SAND SWEEP

ROCK LOG

92/02/24 10:17:34 PROGRAM ID: NSTATION

HETERODONTA Corbiculidae Corbicula

SANDY CREEK SCC4-900718 MACROINVERTEBRATE DATA
SANDY CREEK MACROINVER

TOTAL	51.72	4	p		9	_	က	7	-	P rosection		_	,	2	∞	-	. 13	w ·
SAND													_					
CPOM				-				က		-	-				က		2	-
ROCK LOG			,		9	-	က	ო				-			ß	,		m
R00T/ BANK	OI TO	4							<u>-</u>					2				
RIFFLE								·										_
		su.	×	i.a	shus	snv	i.i.a	8	I		. <u>e</u>		ā	i ii ectra]um	 myia	ronomus	i rtarsus
	ANNELIDA OLIGOCHAETA ARTHROPODA INSECTA COLFOPTERA	Dytiscidae Hydropor	Elmidae Ancyronyx	Dubiraphia	Macronychus	0ptioservus	Promoresia	Stenelmis	Gyrinidae Gyretes	Hydrophilidae Helobata	COLEOPTERA UNI	Athericidae Athericidae Atherix	Ceratopogonidae Bezzia	CHIRONOMIDAE Chironominae Chironomini Phaenopsectra	Polypedilum	Stelechomyia	Stenochironomus	Tanytarsini Rheotanytarsus
www.companies			de salaman e e e e e e e e e e e e e e e e e e e	gyerreriege /	toron russia			ene terralantes	rangal-magyaran samaran as	**************************************	e velikelinin ilmelikasi.	T Year years to a competition of the ex-	personal and the second	and the specimental section and the		etgate, cartegers	needia dan nee sah 1994 da	ak principasaalakan menentak perentak bidi

2/24 10:27:04		TAXA LIST	LIST					PAGE
RAM ID: NSTATION		SANDY CREEK MACROINVERI	SANDY CREEK SCC4-900718 MACROINVERTEBRATE DATA					
		RIFFLE	R00T/ BANK	ROCK L0G	СРОМ	SAND	T0TAL	
Tanytarsus					_		.	
Orthocladinae Orthocladius		m		2			ហ	
Tanypodinae Ablabesmyia			8				2	
Thienemannimyia Grp	ć		_				-	
Taban i dae Tabanus	I		4				4	
Tipulidae Tipula			ω				∞	
EPHEMEROPTERA Baetidae Baetis		4		7			11	
Ephemeridae Hexagenia			o ʻ				9	
Heptageniidae Heptagenia				ო			က	
Stenonema				∞	6		17	
Oligoneuridae Isonychia		-			ഹ		9	
HEMIPTERA Corixidae Corixidae UNID dif			-				-	
Mesoveliidae Mesovelia			, -				-	
MEGALOPTERA Sialidae Sialis			13				13	
ODONATA Aeshnidae Boyeria					2		2	
Calopterygidae Calopteryx			-				*****	

92/02/24 10:27:04	TAXA LIST	LIST				_	PAGE
PROGRAM ID: NSTALLON	SANDY CREEK SCC4-900718 MACROINVERTEBRATE DATA	SCC4-900718 EBRATE DATA					
	RIFFLE	ROOT / BANK	ROCK LOG	СРОМ	SAND	TOTAL	
Coenagrionidae Argia		2				7	
Coenagrionidae UNID		-	,- -			2	
Gomphi dae Gomphus		4				4	
Macromiidae Macromia		2				5	
PLECOPTERA Perlidae Acroneuria			ιν	-		9	
Paragnetina			11			12	
TRICHOPTERA Brachycentridae Brachycentrus			-			-	
Hydropsychidae Ceratopsyche	91		82			34	
Cheumatopsyche	5		23	=		36	
Potamyia			2			7	
Leptoceridae Mystacides		_				-	
Nectopsyche			14			14	
Psychomyiidae Lype		p					
MOLLUSCA GASTROPODA LIMNOPHILA Ancylidae Ferrissia				,		-	
MESOGASTROPODA Pleuroceridae Elimia	က		28	-	 ©	70	
PELECYPODA HETERODONTA							

SANDY CREEK SCC4-900718 MACROINVERTEBRATE DATA

ROOT/ BANK

RIFFLE

СРОМ

TOTAL

SAND

9

ဖ

ROCK LOG

92/02/24 10:27:04 PROGRAM ID: NSTATION

Corbiculidae Corbicula